6 research outputs found

    Shared Roots: Regularizing Deep Neural Networks through Multitask Learning

    Get PDF
    In this paper, we propose to regularize deep neural nets with a new type of multitask learning where the auxiliary task is formed by agglomerating classes into super-classes. As such, it is possible to jointly train the network on the class-based classification problem AND super-class based classification problem. We study this in settings where the training set is small and show that , concurrently with a regularization scheme of randomly reinitializing weights in deeper layers, this leads to competitive results on the ImageNet and Caltech-256 datasets and state-of-the-art results on CIFAR-100

    ERM++: An Improved Baseline for Domain Generalization

    Full text link
    Multi-source Domain Generalization (DG) measures a classifier's ability to generalize to new distributions of data it was not trained on, given several training domains. While several multi-source DG methods have been proposed, they incur additional complexity during training by using domain labels. Recent work has shown that a well-tuned Empirical Risk Minimization (ERM) training procedure, that is simply minimizing the empirical risk on the source domains, can outperform most existing DG methods. We identify several key candidate techniques to further improve ERM performance, such as better utilization of training data, model parameter selection, and weight-space regularization. We call the resulting method ERM++, and show it significantly improves the performance of DG on five multi-source datasets by over 5% compared to standard ERM, and beats state-of-the-art despite being less computationally expensive. Additionally, we demonstrate the efficacy of ERM++ on the WILDS-FMOW dataset, a challenging DG benchmark. We hope that ERM++ becomes a strong baseline for future DG research. Code is released at https://github.com/piotr-teterwak/erm_plusplus.Comment: An improved baseline for Domain Generalizatio

    VisDA 2022 Challenge: Domain Adaptation for Industrial Waste Sorting

    Full text link
    Label-efficient and reliable semantic segmentation is essential for many real-life applications, especially for industrial settings with high visual diversity, such as waste sorting. In industrial waste sorting, one of the biggest challenges is the extreme diversity of the input stream depending on factors like the location of the sorting facility, the equipment available in the facility, and the time of year, all of which significantly impact the composition and visual appearance of the waste stream. These changes in the data are called ``visual domains'', and label-efficient adaptation of models to such domains is needed for successful semantic segmentation of industrial waste. To test the abilities of computer vision models on this task, we present the VisDA 2022 Challenge on Domain Adaptation for Industrial Waste Sorting. Our challenge incorporates a fully-annotated waste sorting dataset, ZeroWaste, collected from two real material recovery facilities in different locations and seasons, as well as a novel procedurally generated synthetic waste sorting dataset, SynthWaste. In this competition, we aim to answer two questions: 1) can we leverage domain adaptation techniques to minimize the domain gap? and 2) can synthetic data augmentation improve performance on this task and help adapt to changing data distributions? The results of the competition show that industrial waste detection poses a real domain adaptation problem, that domain generalization techniques such as augmentations, ensembling, etc., improve the overall performance on the unlabeled target domain examples, and that leveraging synthetic data effectively remains an open problem. See https://ai.bu.edu/visda-2022/Comment: Proceedings of Machine Learning Researc
    corecore